

Published on Web 05/17/2006

Local Diffusion in Paramagnetic Solutions by NMR Relaxometry at One Frequency

Andrea Melchior and Pascal H. Fries*

Laboratoire de Reconnaissance Ionique, Service de Chimie Inorganique et Biologique (UMR-E 3 CEA-UJF), CEA/DSM/Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, F-38054 Grenoble Cédex 9, France

Received February 21, 2006; E-mail: fries@drfmc.ceng.cea.fr

Experimental studies of the unrestricted translational (t) diffusion coefficient D^t of molecules in a liquid provide information¹ about the organization of their immediate environment and a way to test the models of intermolecular forces and the theories of transport. In porous media and biological tissues, D^t is important to correlate the long-range apparent diffusion² of the molecules explored by pulsed gradient spin—echo (PGSE) NMR with their interactions with the fluid/matrix interfaces and/or macromolecules in a crowded environment. Here, a simple method is proposed to measure the relative diffusion coefficient of a pair of small molecules at the nanometer scale. It is easy to use on standard spectrometers and magnetic resonance (MR) imaging (I) and microscopy (M) instruments.

In a liquid solution, consider nuclear spins *I* on solvent or solute molecules M_I in the presence of electronic spins *S* on solutes M_S without long-ranged charge—charge or binding interaction with M_I . The longitudinal relaxation rate, R_1 , transverse relaxation rate, R_2 , and longitudinal relaxation rate, $R_{1\rho}$, in the rotating frame of a spin *I* can be measured in an external magnetic field **B**₀ by standard NMR sequences.³ Each rate R_{α} is the sum⁴ $R_{\alpha} = R_{\alpha 0} + R_{\alpha p}$ of the value $R_{\alpha 0}$ in the diamagnetic solution without paramagnetic solutes and of the paramagnetic (p) relaxation enhancement (PRE) $R_{\alpha p}$ of the spin *I* due to its purely outer-sphere (OS) interactions with the spins *S*. The PREs R_{2p} and $R_{1\rho p}$ are indistinguishable, but are in extremely viscous solvents.⁴ The mixed PRE is defined as⁴

$$R_{\rm mix} = R_{\rm mix2} \equiv \frac{3}{2} \left(R_{\rm 2p} - \frac{R_{\rm 1p}}{2} \right) \simeq R_{\rm mix1\rho} \equiv \frac{3}{2} \left(R_{\rm 1\rho p} - \frac{R_{\rm 1p}}{2} \right)$$
(1)

The relaxivity, r_{α} [s⁻¹ mM⁻¹] (α = 1, 2, 1 ρ , mix), is defined as the PRE $R_{\alpha\rho}$ divided by the concentration c_S [mM] of M_S

$$r_{\alpha} \equiv R_{\alpha p}/c_{S} = (R_{\alpha} - R_{\alpha 0})/c_{S}$$
(2)

The relative diffusion coefficient *D* of M_I and M_S can be derived from three properties, *P*1, *P*2, and *P*3, of r_{mix} and r_1 . The method was tested in the case of the proton PREs of the *tert*-butyl alcohol $M_I = (CH_3)_3COD$ due to the paramagnetic complex $M_S =$ $Gd(dtpa)^{2-}$ in a D₂O solution with $(dtpa)^{5-} =$ diethylenetriamine pentaacetate. Let γ_I and γ_S be the gyromagnetic ratios of the spins *I* and *S*, and $\omega_I \equiv |\gamma_I|B_0$ and $\omega_S \equiv |\gamma_S|B_0$, their angular Larmor frequencies. The relaxation theory used to derive *D* involves the OS variation parameter $\lambda_D \equiv (8\pi/45)\gamma^2_I\gamma^2_S\hbar^2 S(S+I)10^{-6}N_{Avogadro}$. To discuss P1-P3, auxiliary geometrical and dynamical molecular quantities are introduced: denote the collision diameter of M_I and M_S by *b* and their translational correlation time by $\tau \equiv b^2/D$. It is assumed that the longitudinal electronic time correlation function^{4,5} (TCF) $G_{II}^{nor}(t) \equiv \langle S_z(t)S_z(0) \rangle/\langle S_z(0) S_z(0) \rangle$ of the spin *S* is a decaying exponential with an electronic relaxation time T_{1e} . This assumption

Figure 1. Relaxivities r_{α} ($\alpha = 1$, mix2, mix1 ρ) versus (ν_l)^{1/2} in D₂O at 298 K.

holds for nitroxide radicals and complexed paramagnetic metal ions in *S* states (L = 0), such as Mn²⁺ or Gd³⁺ at sufficiently high field values.⁵

(P1) Above a moderate field $B_0 \ge B_0^{\text{indep}} (B_0^{\text{indep}} \ge 1.5 \text{ T for } \text{Gd}(\text{III}) \text{ spins}), r_{\text{mix}}(B_0)$ reaches the infinite-field value $r_{\text{mix}}(\infty)$

$$r_{\rm mix}(B_0) \cong r_{\rm mix}(\infty) \equiv r_{\rm mix}(B_0 = \infty) \tag{3}$$

so that it becomes independent of field.

The measured proton relaxivity, r_{mix} , of M_I versus $v_I^{1/2}$ [MHz^{1/2}] is reported in Figure 1. In the frequency interval, 0–20 MHz, it grows markedly because the electronic relaxation time T_{1e} increases rapidly⁵ and becomes significantly longer than τ . Then, the increase of T_{1e} has less effect. At a field $B_0^{\text{indep}} \ge 3-4$ T (120 MHz), r_{mix} reaches a plateau, where $r_{\text{mix}} = r_{\text{mix}}(\infty) = 4.1 \text{ s}^{-1} \text{ mM}^{-1}$ to within the experimental accuracy of 2–3%.

(P2) In the OS medium-field range defined by⁴ $\omega_l \tau < 1$ and $\omega_s \tau \gg 1$, for $B_0 \ge B_0^{\text{indep}}$, the longitudinal relaxivity is

$$r_1 \simeq r_{\text{mix}} - (\lambda_D / D^{3/2}) \sqrt{\pi \nu_I} \simeq r_{\text{mix}}(\infty) - (\lambda_D / D^{3/2}) \sqrt{\pi \nu_I} \quad (4)$$

If $B_0 \ge B_0^{\text{indep}}$, the inequality $(r_{\text{mix}} - r_1) \le 0.5r_{\text{mix}}$ is a conservative rule ensuring that eq 4 holds.

The experimental r_1 versus $v_I^{1/2}$ [MHz^{1/2}] is shown in Figure 1. The frequency axis can be split into three field ranges: in the "low"-field range below 120 MHz, r_1 depends on the details⁴⁻⁶ of the relative translational and rotational motions of the interacting species and on the electronic relaxation. Its behavior, just as that of r_{mix} , has no simple features. In the OS medium-field (mf) range from $v_{Imin}^{\text{mf}} = 120$ MHz to $v_{Imax}^{\text{mf}} = 800$ MHz, r_1 shows the linear decrease in $v_I^{1/2}$ of eq 4. The relative diffusion coefficient $D = 0.88 \times 10^{-5}$ cm² s⁻¹ is readily obtained from the r_1 and $r_{\text{mix}}(\infty)$ values measured at one frequency. In the "high"-field range $v_I \ge v_{Imax}^{\text{mf}}$, r_1 is again a complicated function depending on the details of the interacting species.

Figure 2. Relative diffusion coefficients versus T/η in D₂O.

(P3) For
$$B_0 \ge B_0^{\text{indep}}$$
, D is inversely proportional to r_{mix}

$$D = k_{\rm solv} / r_{\rm mix} = D^{\rm ref} r_{\rm mix}^{\rm ref} / r_{\rm mix}$$
(5)

where k_{solv} is determined by the solvent, that is, the more numerous species. The solvent-related parameter k_{solv} depends very little on the temperature, pressure, and concentrations of reasonable amounts of added neutral or charged spectator species in the solution.⁷ Here, spectator species are defined as molecules which do not bind to M_I or M_S for durations of the order of τ or longer. An experimental estimate of k_{solv} is $k_{\text{solv}} = D^{\text{ref}} r_{\text{mix}}^{\text{ref}}$, where D^{ref} and $r_{\text{mix}}^{\text{ref}}$ are the measured values for the M_I/M_S pair in a chosen reference (ref) system.

The reference system is the $(CH_3)_3COD/Gd(dtpa)^{2-}$ pair in D₂O at 298 K. The coefficient D, obtained between 283 and 343 K from eq 5, is plotted versus T/η in Figure 2, where it compares very well with its usual definition as the sum

$$D^{\rm sum} = D_I^{\rm t} + D_S^{\rm t} \tag{6}$$

of the self-diffusion coefficients D_I^t and D_S^t of $(CH_3)_3COD$ and $Lu(dtpa)^{2-}$, representing Gd(dtpa)^{2-}, which were measured by the PGSE NMR technique.^{4,8}

The applicability of eq 5 was further tested by adding fair amounts of viscous glycerol or KCl in the reference solution. In the glycerol- d_8/D_2O mixture containing 42% w/w of glycerol, the viscosity increase by a factor of \sim 3.4 implies a similar reduction of the diffusion rates $D = 0.247 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ from eq 5 and $D^{\text{sum}} = 0.243 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$, which are in good agreement. When adding 2.65 M of KCl, $D = 0.835 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ from eq 5 and $D^{\text{sum}} = 0.854 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ change very little with respect to the reference values because the viscosity of a water solution of KCl is not altered by a rather large concentration of this salt, and the self-diffusion of Gd(dtpa)²⁻ is weakly reduced by the Coulomb interactions with the surrounding ions.1c

Moreover, if P1-P3 hold, c_s and D can be simultaneously estimated as $c_S = x^3/y^2$ and $D = x^2/y^2$ with $x \equiv R_{\text{mix}}/k_{\text{solv}}$, $y \equiv (R_{\text{mix}})$ $(-R_{1p})/(\lambda_D \pi^{1/2} \nu_I^{1/2})$ (see Tables S6, S10, S14).

It was recognized⁹ early that PRE studies could provide information about local diffusion at the cost of an accurate and complex treatment involving several parameters. Here, P1-P3 allow one to extract relative diffusion rates from experiment with straightforward algebra. The practical implementation of the method for a given M_l/M_s pair is as follows. Take a field B_0 (typically $B_0 \ge 2$ T), where r_{mix} is independent of electronic relaxation. Determine the relative diffusion coefficient D^{ref} of M_I and M_S in a reference solution, for instance, by using P2. Measure r_{mix}^{ref} in this reference system. Measure r_{mix} in other solutions of M_I/M_S in the same solvent and apply P3 to derive D. If M_S is large enough for D_S^t to verify D_S^t $\ll D_I^{t}$, the method can serve to obtain the self-diffusion coefficient $D_I^{\rm t} \simeq D$ of M_I . As noted previously,⁴ since the molecular spatial dynamics responsible for the relaxivities takes place over distances of the order of a few nanometers, the method applies to molecular motions in confined media.^{2,10} Its extension can be envisaged to large molecules,¹¹ in particular, if the PRE is induced by superparamagnetic particles,^{6d} for which P1 and P3 hold.

Acknowledgment. EC COST Action D-18 "Lanthanide Chemistry for Diagnosis and Therapy", European Molecular Imaging Laboratories (EMIL) network, CEA/DEN, IBS NMR facilities, and Dr. A. Roch are acknowledged. This work is dedicated to Prof. Yves Ayant on the occasion of his 80th birthday.

Supporting Information Available: Proofs of P1-P3, the raw experimental data, and complementary information are given in pp S1-S23. This material is available free of charge via the Internet at http:// pubs.acs.org.

References

- (1) (a) Harris, K. R.; Newitt, P. J. J. Phys. Chem. B 1998, 102, 8874-8879. (b) Mahoney, M. W.; Jorgensen, W. L. J. Chem. Phys. 2001, 114, 363-366. (c) Dufrêche, J. F.; Bernard, O.; Durand-Vidal, S.; Turq, P. J. Phys. Chem. B 2005, 109, 9873–9884. (2) (a) Callaghan, P. T. Magn. Reson. Imaging 2005, 23, 133–137. (b) Tyszka,
- M.; Fraser, S. E.; Jacobs, R. E. Curr. Opin. Biotechnol. 2005, 16, 93– 99. (c) Bicout, D. J.; Field, M. J. J. Phys. Chem. 1996, 100, 2489–2497. Canet, D. Adv. Inorg. Chem. 2005, 57, 3-40.
- (4) Fries, P. H.; Gateau, C.; Mazzanti, M. J. Am. Chem. Soc. 2005, 127, 15801–15814.
- (5) Fries, P. H.; Belorizky, E. J. Chem. Phys. 2005, 123, 124510-1-124510-
- (6) (a) Kowalewski, J.; Kruk, D.; Parigi, G. Adv. Inorg. Chem. 2005, 57, 41-104. (b) Bertini, I.; Luchinat, C.; Parigi, G. Adv. Inorg. Chem. 2005, 57, 105-172. (c) Aime, S.; Botta, M.; Terreno, E. Adv. Inorg. Chem. **2005**, *57*, 173–237. (d) Muller, R. N.; Vander Elst, L.; Roch, A.; Peters, J. A.; Csajbok, E.; Gillis, P.; Gossun, Y. *Adv. Inorg. Chem.* **2005**, *57*, 239–292. (e) Korb, J.-P.; Bryant, R. G. *Adv. Inorg. Chem.* **2005**, *57*, 293-326.
- (7) (a) Hwang, L. P.; Freed, J. H. J. Chem. Phys. 1975, 63, 4017-4025. (b) Ayant, Y.; Belorizky, E.; Fries, P.; Rosset, J. J. Phys. (France) 1977, 38, 325-337. (c) Fries, P.; Belorizky, E. J. Phys. (France) 1978, 39, 1263-1282. (d) Fries, P. H.; Patey, G. N. J. Chem. Phys. **1916**, 59, 1203–1282. (d) Fries, P. H.; Patey, G. N. J. Chem. Phys. **1984**, 80, 6253–6266. (e) Gierer, A.; Wittz, K. Z. Naturforsch. Teil A **1953**, 8, 532–538.
 (8) Jerschow, A.; Müller, N. J. Magn. Reson. **1997**, 125, 372–375.
 (9) (a) Berne, B.; Kivelson, D. J. Phys. Chem. **1979**, 83, 1401–1405. (b) Patersch. C. E. Durstet B. C. L. Chem. **1979**, 124, 1422. (1425).
- Polnaszek, C. F.; Bryant, R. G. J. Chem. Phys. 1984, 81, 4038-4045. (a) Gröhn, H. I.; Michaeli, S.; Garwood, M.; Kauppinen, R. A.; Gröhn, O. H. J. *Magn. Reson. Med.* **2005**, *54*, 14–19. (b) Pfeuffer, J.; Lin, J. C.; (10)DelaBarre, L.; Ugurbil, K.; Garwood, M. J. Magn. Reson. 2005, 177, 129 - 138.
- (11) Ferrage, F.; Zoonens, M.; Warschawski, D. E.; Popot, J.-L.; Bodenhausen, G. J. Am. Chem. Soc. 2003, 125, 2541-2545.

JA061235Z